Présent et Futur de la Spintronique

Influence du spin sur la mobilité des électrons dans un métal ferromagnétique

Mixing impurities A and B with opposite or similar spin asymmetries: *the pre-concept of GMR*

Epitaxie par jet moléculaire (croissance de multicouches métalliques)

Multicouches magnétiques

Multicouches magnétiques

P. Grünberg, 1986 \rightarrow couplage antiferromagnétique entre couches

Multicouches magnétiques

P. Grünberg, 1986 \rightarrow couplage antiferromagnétique entre couches

• Magnetoresistance Géante (GMR) (Orsay, 1988, multicouches Fe/Cr, Jülich, 1989, tricouches Fe/Cr/Fe)

Magnetoresistance Géante (GMR) (Orsay, 1988, multicouches Fe/Cr, Jülich, 1989, tricouches Fe/Cr/Fe)

Aimantations anti-parallèles (champ nul, forte résistance)

Aimantations parallèles (champ appl., petite resist.)

Condition pour GMR: épaisseurs ≈ nm GMR oscillations in Co/Cu (Orsay 1991, Mosca, AF et al)

Magnetoresistance Géante (GMR) (Orsay, 1988, multicouches Fe/Cr, Jülich, 1989, tricouches Fe/Cr/Fe)

Aimantations anti-parallèles (champ nul, forte résistance)

Aimantations parallèles (champ appl., petite resist.)

Condition pour GMR: épaisseurs ≈ nm

1 disque dur de 400 Giga-octet peut contenir une information équivalente à environ 800.000 livres (format livre de poche) ou à 1 million de photographies (de définition moyenne) ou à 8000 CD audio (compression MP3) ou à 300 heures video, ou 36 heures video haute def.

• Enregistrement magnétique:

> Disque 5 GB Microdrive

Analyse biologique « biochips »

quelques microns

(prototypes avec réseaux de capteurs pour détecter un millier de cibles différentes)

Applications: - read heads of Hard Disc Drive

- M-RAM (Magnetic Random Access Memory)

1)Epitaxial magnetic tunnel junctions (MgO, etc)

2) Directions pour une TMR plus élevée Ferromagnétiques à polarisation en spin 100% (composés demi-metalliques) Exemple: La_{2/3}Sr_{1/3}MnO₃ (LSMO) jonctions tunnel LSMO/SrTiO₃/LSMO (CNRS/Thales): TMR de 1800% correspondant à 95% de polarisation de spin

Image de microscopie électronique par J-L. Maurice, UMR CNRS/Thales

Transfert de spin (renversement d'aimantation, génération de micro-ondes)

Spintronique avec semi-conducteurs

Spintronique moléculaire

Transfert de spin (renversement d'aimantation, génération de micro-ondes)

Spintronique avec semi-conducteurs

Spintronique moléculaire

Introduction:

accumulation de spin

et courant de spin

Concept du transfert de spin (Slonczewski 1996)

La composante transverse du spin est perdue par les électrons du courant, mais est en fait transférée au SPIN global S de la couche → rotation de S

Experiments on pillars

Metallic pillar $\approx 50 \times 150 \text{ nm}^2$

Tunnel junction

E-beam lithography + etching

courtesy of S. Mangin University of Nancy

Experiments on pillars

Metallic pillar $\approx 50 \times 150 \text{ nm}^2$

Tunnel junction

E-beam lithography + etching

- a) First regime (low H): irreversible switching (CIMS)
- b) Second regime (high H): steady precession (microwave generation)

Regime of steady precession (microwave frequency range)

Application du transfert de spin: commutation de mémoires MRAM et d'électronique logique reconfigurable

Demain, électroniquement

° par transfusion de spins

Synchronization of STOs

Synchronization by exchange coupling (magnetic elasticity)

- Kaka et al (NIST Boulder) Nature 2005

(similar results by Freescale)

Phase locking of oscillations for $r\approx 500\ nm$

Experiments of STO synchronization by electrical connection

(B.Georges, AF et al, CNRS/Thales and LPN-CNRS, preliminary results)

