Rôle et importance de l'eau dans les membranes cellulaires

Académie des sciences

31 Mars 2009

LES MEMBRANES ORGANISENT LES CELLULES EN COMPARTIMENTS FONCTIONNELLEMENT DISTINCTS

LES MEMBRANES CONTRÔLENT LES ÉCHANGES ENTRE COMPARTIMENTS

- DEUX FEUILLETS VISIBLES AU MICROSCOPE ÉLECTRONIQUE
- ÉPAISSEUR : 7 À 8 NM

Structure de base

Membranes

ECHANGES IONIQUES - TRANSPORT D'EAU ET AUTRES MOLÉCULES, TRANSMISSION DE SIGNAL ,.... EAU : RÔLE SECONDAIRE?

Modélisation moléculaire

SYSTEME DE N PARTICULES (ATOMES)

INTERACTION

$$U(\mathbf{r}_1,\mathbf{r}_2,\ldots,\mathbf{r}_N) \equiv U(\mathbf{r}^N)$$

FORCES DERIVANT DU POTENTIEL

$$f_i(\mathbf{r}^N) = -\frac{\partial U(\mathbf{r}^N)}{\partial \mathbf{r}_i}$$

DYNAMIQUE MOLECULAIRE:

$$m_i \ddot{\mathbf{r}}_i = f_i(\mathbf{r}^N)$$

Observables : Principes de mécanique statistique.

Une molécule: Multiples fonctions

rôle de l'eau au voisinage des membranes

STRUCTURE ET INTÉGRITÉ DE LA MEMBRANE Electroporation

Fonctionnement de protéines membranaires Excitabilite cellulaire

Eau au voisinage des membranes

POTENTIEL ÉLECTROSTATIQUE

$$\psi(z) - \psi(0) = -\frac{1}{\epsilon_0} \int_0^z dz' \int_0^{z'} \rho(z'') dz''$$

CHAMP ÉLECTRIQUE

(500 mV: Cryo EM) Wang et al. PNAS 2006

Membrane electro-perméabilisation / rupture/

Applications

Réversible: Vectoriser des

MOLÉCULES

Lundqvist et al. PNAS 1998

Encycl. of Biomedical Engineering (John Wiley & Sons 2006)

IRRÉVERSIBLE: THER DES MICRO-ORGANIS

TUER DES MICRO-ORGANISMES

Membranes soumises à un champ électrique

M. Tarek Biophys. J. 2005

Membranes soumises à une différence de potentiel

Le voltage TM peut aussi être
Induit par une distribution de
Charges asymétrique

Delemotte et al. JPCB 2008

• LA MEMBRANE AGIT COMME UN CONDENSATEUR $V = \Delta Q/C$ Capacitance C 0.85 $\mu F/cm^2$

Champ électrique local

 $\Delta V=0V$

 $\Delta V=2V$

Modéliser l'electroporation

Modéliser l'electroporation

Tarek. M. Biophys. J. 2005

Reconstitution de la membrane

Plus rapide pour les petits pores L'eau est d'abord rejetée de la membrane Association des têtes polaires plus stable

Translocation d'un brin d'ADN

 $\Delta V=2V$

COMPLEXE ADN/LIPID Colzio el al. PNAS 2002

FORMATION DE PORES PAR ELECTROPORATION NÉCESSAIRE AVANT LA TRANSLOCATION

Eau au voisinage des membranes

Une molécule: Multiples fonctions

Henin et al. Biophys. J. 2006

Tarek et al. Biophys. J. 2003 Dehez et al. JPCB 2007

Excitabilité cellulaire et canaux ioniques

- Cellules excitables: Faibles courants électriques
- NEURONES ET FIBRES MUSCULAIRES

Hodgkin and Huxley J. Physiol. (1952)

Canaux ioniques sensibles à la tension

SÉQUENCES CANAL NA⁺ *Noda et al. Nature 1984* CANAL K⁺ : *Tempel et al. Sience1987*

 $\operatorname{AIL}^{362}_{R} \operatorname{VIR}^{365}_{R} \operatorname{VR}^{368}_{R} \operatorname{FRIFKLSRHSK}^{371}_{R} \operatorname{FKLSRHSK}^{377}_{R} \operatorname{KLSRHSK}^{380}_{R}$

Canaux ioniques sensibles à la tension

MODEL CONVENTIONNEL

IL SUFFIT QUE L'ENVIRONNEMENT LOCAL DES CHARGES VARIE

EAU

MODEL "TRANSPORTEUR"

$$\mathbf{Q} \cdot \Delta \mathbf{V} = \Delta \mathbf{G} \langle \boldsymbol{\mathcal{G}}, \Delta \mathbf{V} \rangle \Delta \mathbf{G} \langle \boldsymbol{\mathcal{C}}, \Delta \mathbf{V} \rangle$$

$$\Delta G(\mathbf{Q}, \Delta V) = G(\mathbf{Q}, \Delta V) = G(\mathbf{Q}, 0) = \Delta V \cdot \sum_{i} q_{i} \cdot \delta_{i}^{\lambda}$$

$$\delta_{i}^{\lambda} \equiv \frac{\partial}{\partial V} \phi_{i}^{\lambda}(\mathbf{r}_{i})$$

POTENTIEL ÉLECTROSTATIQUE LOCAL

Sigworth, Q. Rev. Biophys. 1994

Starace and Bezanilla Nature 2004

Activation in Silico

Treptow et al. Biophys. J. 87: 2365 (2004)

Activation in Silico

Environnement local de l'Arg³⁶²

Starace, et al. Neuron. 1997

Starace, and Bezanilla Nature. 2004

Electrostatique

Structure du premier canal Kv mammalien

POTENTIEL ÉLECTROSTATIQUE

Treptow and Tarek Biophys. J. 2006

Propriétés du canal

EN ACCORD AVEC

LES MESURES D'ACCESSIBILITÉ *Cuello et al. Science 2004*

MESURES D'ÉLECTROPHYSIOLOGIE Starace and Bezanilla Nature 2004

Propriétés du canal

Treptow, Tarek, & Klein, JACS 2009

Conduit hydrophile capable de transporter des ions

MUTATION OF RÉSIDUS CHARGÉE (ARGININES) DONNE LIEU À DES COURANTS DE FUITE

Sokolov et al. Nature 2007 Sokolov et al. PNAS 2008

Mutations génétiques

COMPRENDRE LES MÉCANISMES MOLÉCULAIRES DUES A L'EFFET DE MUTATIONS GÉNÉTIQUES IMPLIQUÉES DANS DES PATHOLOGIES TYPE PARALYSIE OU ÉPILEPSIE

Channel	Gene	Disease	Mutation	Location	Reference
K _v 7.1	KCNQ1	Long QT 1	R231C	S4 R2	5
K _v 7.2	KCNQ2	BNFS-Myokymia	R207W/Q	S4 R2	6, 7
		BNFS	R214W	S4 R5	
K _v 11.1	KCNH2	Long QT 2	K525N	S4 R0	5
			R528P	S4 R1	
Nav1.1	SCN1A	Generalized Epilepsy with febrile	R859C	IIS4 R1	8, 9
		seizures plus	R1648H	IVS4 R5	
Nav1.4	SCN4A	Hypo PP type II	R669H	IIS4 R1	10
			R672H/G/S	IIS4 R2	11, 12
		Potassium sensitive Normo PP	R675G/Q/W	IIS4 R3	13
		Hyper PP – Paramyotonia congenita	R1448C/H	IVS4 R1	8,9,14
Nav1.5	SCN5A	Long QT 3	R225Q	IS4 R3	5
			R1623Q	IVS4 R0	
Cav1.1	CACNA1S	Hypo PP type I	R528H/G	IIS4 R1	15
			R1239H/G	IVS4 R2	
Cav1.2	CACNA1A	Familial hemiplegic Migraine/	R192Q	IS4 R1	
		progressive cerebral ataxia	R583Q	IIS4 R1	16-18
			R1347Q	IIIS4 R1	

Conclusion

Dans les membranes cellulaires,

Eau interfaciale

stabilité et l'intégrité de la membrane

à l'origine de sa rupture en cas de stress électrostatique.

Eau non restreinte aux milieux intra et extracellulaires

le fonctionnement de protéines transmembranaires

Impliquée dans leur disfonctionnement

Werner Treptow (These + Postdoc) (Assistant Professor . Brasilia University)

Lucie Delemotte (Master. These)

